Adaptive particle routing in parallel/distributed particle filters

نویسندگان

  • Xudong Zhang
  • Lixin Huang
  • Evan Ferguson-Hull
  • Feng Gu
چکیده

Particle filters estimate the state of dynamic systems through Bayesian interference and stochastic sampling techniques. Parallel/distributed particle filters aim to improve the performance by deploying all particles on different processing units. However, the communication cost of transferring particles is high due to the centralized processing in resampling step. To reduce the communication cost without loss of accuracy, the hybrid particle routing policy is designed for the resampling step, which mainly executes particles resampling and exchanges locally and routes them globally every specific number of calculation steps. However, the global particle routing is more necessary when the convergence of particles is low. In this paper, we propose the adaptive particle routing algorithm, in which the local resampling and particle exchange are used, and the planned global particle routing is adopted only when the measured convergence is below the set threshold. The experimental results show the improved performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed Particle Filters for Data Assimilation in Simulation of Large Scale Spatial Temporal Systems

Assimilating real time sensor into a running simulation model can improve simulation results for simulating large-scale spatial temporal systems such as wildfire, road traffic and flood. Particle filters are important methods to support data assimilation. While particle filters can work effectively with sophisticated simulation models, they have high computation cost due to the large number of ...

متن کامل

Optimal Placement and Sizing of DGs and Shunt Capacitor Banks Simultaneously in Distribution Networks using Particle Swarm Optimization Algorithm Based on Adaptive Learning Strategy

Abstract: Optimization of DG and capacitors is a nonlinear objective optimization problem with equal and unequal constraints, and the efficiency of meta-heuristic methods for solving optimization problems has been proven to any degree of complex it. As the population grows and then electricity consumption increases, the need for generation increases, which further reduces voltage, increases los...

متن کامل

AN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION

This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...

متن کامل

Parallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform

There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution and accelerating the convergence speed. However, these algorithms are computationally intensive. The go...

متن کامل

Adaptive Line Enhancement Using a Parallel IIR Filter with A Step-By-step Algorithm

 A step-by-step algorithm for enhancement of periodic signals that are highly corrupted by additive uncorrelated white gausian noise is proposed. In each adaptation step a new parallel second-order section is added to the previous filters. Every section has only one adjustable parameter, i.e., the center frequency of the self-tuning filter. The bandwidth and the convergence factor of each secti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017